IONIZATION OF A NEUTRAL MEDIUM BY AN ELECTRON BEAM

A. S. Dolgov UDC 533.7:537.56/7

The secondary-electron energy distribution function in the neighborhood of a narrow electron
beam is calculated. The total energy range is subdivided into three regions: the Coulomb
region, a region of linear ionization cross sections, and an energy region below the ioniza-
tion potential. Approximate expressions are found for the secondary-electron density and
the plasma frequency in the region of the beam.

When an electron beam passes through a neutral medium, excitation of the medium in a certain re-
gion of space takes place along with deceleration and scattering of the electrons (see [1-4]). The ioniza-
tion of neutral atoms leading to the appearance of secondary electrons is of great importance. Some of
them (the sufficiently energetic ones) are capable of producing new ionization events. Because of ths
cascade process, a plasma region is formed around the beam. In the stationary case, the density of free
charges in this region depends on experimental conditions and on the processes that occur.

Theoretical studies of the energy structure of electron —electron collision cascades in matter are
well known [5]. These calculations usually do not encompass the entire energy range from zero to some
maximum value and do not consider spatial characteristics.

The process under discussion is associated with the possibilities of stimulating breakdown processes
in the neighborhood of the electron beam, with excitation of electromagnetic oscillations in the plasma re-
gion, with the generation of quasiparticles, ete.

Let an infinitely narrow electron beam pass through a medium with an atom density N. We assume
cylindrical symmetry for the problem, neglecting variation of characteristics along the beam, and consider
all collisions to be pair collisions. The energy of the incident electrons is ¢, their velocity is v, (we
consider them nonrelativistic), and n, is the number of electrons per unit length of the beam.

The characteristics of interactions between electrons and atoms of the medium depend strongly on the
electron energy. The cross section for the most important process — generation of new electrons — is of
a complex nature. As is well known [6], the ionization cross section increases linearly at energies near the
jonization potential, having a value of zero at £ = A (A is the ionization energy). When ereaches a value of
mA where m ~2-7, the ionization cross section passes through a maximum and then decreases monotonical-
ly. The position of the maximum corresponds to € ~#5A for the molecular gases N, and O,. If & > mA, the
dependence of the ionization cross section and the distribution of energy transfer to ejected electrons ap-
proximates the Rutherford law. Therefore, in considering cascade multiplication of electrons, it is con-
venient to subdivide the entire energy range into three regions. The first region (Coulomb region) covers
the broad region from mA to the energy ¢, of the electrons in the beam. The second region (region of
linear cross sections) corresponds to the condition A = ¢ = mA., In the third region, e < A. New electrons
do not appear in this last energy region. The mainprocesses there are deceleration of electrons and their
recombination with ions. The difficulties of a theoretical description of this region are associated with the
complex nature of electron deceleration at low energies and with the difficulties involved in a description
of the kinetics of the establishment of equilibrium between the electron gas and molecules. I is also known
[6] that the coefficient of recombination depends strongly on energy. For this region, it is convenient to
assume a simple, phenomenological computational scheme, As will be seen from the following, the most
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important characteristics of the cascade region, from the applied point of view, depend relatively little
on the value of the recombination coefficient.

Since the electron range decreases as ¢ decreases, one can assume the dimensions of the perturbed
region are determined by the range of electrons with the highest energy (a calculation has been made [7]
which confirms this assumption for the nonstationary case). One can assume electrons in the second and
third regions migrate slightly and their spatial distribution is determined only by the spatial dispersion of
the arrival of electrons of higher energies. In the first region, the electrons move practically linearly
along the normal to the beam,

The kinetic equations for the regions are

991 (r, 1 ¢ d ¢ de’ b
L tnmo =\ wt ey | B ) iy () )
LA &+g 7 .
mAa mA ’ o b de’ o b d
s & r !
a g @2 (r, &) de’ + a Scpz(r, g'yde’ — aeq, (r, &) + S q)l(r,s)—s,—(———a_l_m2 + S @1("13)7(————8,_86)2 =0 @)
A € A etg
€0 A maA
ang® (r) = \ @ (7, s) 5 s+A)2 + 2aA 5 @, (r, &')de’
\ mA 0 A (3)
(@, = vy (5 8)

Here, fk is the electron energy distribution function in the k-th region; r is a radial coordinate mea-
sured from the initiating beam; @ and b are constants depending on the density of the material; g is the
minimum energy transfer in a Coulomb collision; nj is the electron density in the k-th region, i.e., the re-
sult of integration of the distribution function over the energy region; « is the recombination coefficient.

The boundary condition for Eq. (1) has the form
lrl_r_% 2mr @ (r, &) = cvogy~t (6 + A)? )
where c is a constant proportional to the linear density n, of the electrons in the beam and to the density
N. One can assume
‘ c = afn N, B = Zé&
where 7 is the average charge of the targets.

The constant b is such that
b = nf>N

An explicit expression for the constant ¢ can be obtained from the condition for the equality of the
values of the ionization cross section at the energy mA calculated from the relationships in the first and
second regions. This gives

a = nfB*N | mPA%g

Electrons in the energy ranges of the second and third regions produced by the initiating beam are

not taken into account in Egs. (1)-(3). They should be considered separately.

We write
ma mA
o\ er(e)ds o § g @)de —asy () Feve /e HARRE=0 5)
A € :
mA
any'? = 2aA S Qo (') de” - cvy [ 2841 2A (6)
A

In Egs. (5) and (6}, ry is a quantity of the order of (6N)7L, where o is the scattering cross section for
electrons having an energy ~mA, i.e., the most mobile electrons in the two energy ranges under discus-

sion.
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The analysis may be performed analytically by using a number of approximate operations,

The first term on the right of the equality sign in Eq. (1) is small in comparison with the second (the
minimum value of the expression (& +A) is [(m+1)A]~2 while the corresponding factor in the second term
is g~ where g << A). One can omit this term by neglecting those ionization events in the first region which
occur with large energy transfer to ejected electrons. The number of such collisions in Coulomb processes
is small.

The main contribution to the value of the integral (second term) is given by values ¢! close to £. This
makes it possible to write

p(rne)=o (e + (e —e)dp (e /oe
If we substitute this relation in Eq. (1) and introduce the variable y =r¢, we obtain

dy - b b d
a—fz—gny+—;n% @
Here, 1 ~ 2-4. Equation (7) is a first-order partial differential equation. An exact solution satisfy-
ing the condition (4) can be found.

We obtain for the function ¢,

it g

P2 () €) = g = (b7 - €37 [(2bqr + €3 - A ®)
It is clear from Eq. (8) that the density of electrons in the first group falls more rapidly than r-! as
a function of distance from the beam. The average energy of the electrons in the region is greater for

larger r, which is explained by increased "eating up® of low-energy electrons. The spatial variation of the
distribution finction for an arbitrary value of ¢ has the following nature.

In the region of small r, the decrease in f, differs little from the r~! law. At more significant values
of r, the rate of fall increases and,at "large® r,approximates an r~"/2 law. In other words, the boundary
of a spatial region where there is a marked amount of electrons of a given energy is rather sharp.

The regions of large and small distances r are determined respectively by the conditions
2r > &2, 2byr << €°

When the beam intensity n; varies, the distribution functions for all values of r and ¢ change propor-
tionately. A change in the energy €, entails an inversely proportional change in fi(r, £). We point out
there is a change in f; when there is a change in N, i.e., in the density of the medium. When r — 0, fiin-
creases in proportion to the increase in N. The spatial region of perturbation is narrowed approximately
proportionately to N71,

Knowing the formof the function ¢, (r, £), Eq. (2) can be investigated. If Eq. (2) is differentiated
with respect to €, then considering that

@2 (r, 8) = @, (e) + 6 (e) 09, (r, &) / O
we obtain in approximate fashion
acpg 3 S1

—_r3a_+s+61 P2 = a(e + 01) 9)
BCA, Si=1:A)

The solutions of the linear equation (9) take the forms

€t

N 1 : . s (mA + &)
e &) = T rsF BA(“ T 802 81w, 1) 4 @ (M) =gy (10)
% de o sba
Sy(rie) = — mSA(PI(B )'?' (e Ap +">A(P1(8 kl(a'—-—e—{—g)“‘ (11)

Note that consideration can be limited to the first term in Eq. (11) for S; when r is large.
Equation (3) yields ‘
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Thus
n(r) =mn () + ny (7)) + 05 (7)

The electron densities in the first and second energy ranges, calculated from Eqgs. (8), (10), and (11),

are
£ m.A

ny (r) = S RUR S (;’ Dde, ()= 5 hcluR)] (;' ®) de
mA A

The spatial variation of the functions n, and ny correlate to a considerable extent with the relation
n; =n,(r), which is determined by the function ¢,(r, €). Thus there is interest in the values of ny in the
region closest to the beam, where these quantities are maximum. We turn to Egs. (5) and (6).

The expression for ¢,' (¢), determined in much the same way as ¢, (¢), is written as

'y . 2CVD 1 (m4+1)A 1
® O G TTHF {ln eT A 1 Im (m+1)} (12)
Integrating Eq. (12) divided by (2¢)!/2M™1/2, we determine n,’
ny' =~ V2M cv, | 2haeort A% (m = 5) (13)
For the electron density in the third region for the same values of m, we obtain the approximate
expression
s 3 cvy  \'2
gy =~ (T aeory®A ) (14)
Adding Egs. (13) and (14), we finally write
VW vy

’
n =

+ 3 cvg 12
2hagrotA’e 4 oaggre?A

Since ry~N~1, the dependence of n,' on N is rather strong (n,' is proportional to N?). The quantity
ng' is proportional to N¥2, For sufficiently large values of the recombination coefficient, the dependence
of n' on N is determined by the behavior in the nonrecombination region. At small values of o, ns* has a
dominant influence on the magnitude of n', i.e., the recombination zone dominates.

Similarly, n' ~n0V2 at small values of @ and n' is a linear function of ny with sufficiently intense
recombination.

Oscillations may be excited in the plasma surrounding the beam. We write an expression for the
plasma frequency w in the region of maximum density assuming the quantity ny' makes the main contribu-
tion to n';

| 4we? (3nZ%in.stN3y 1/:}1,’2
o= { M 4neoA

It is clear that w depends slightly on the quantities ny, v;, and . We evaluate w for the case g4=
10 keV, A =15 eV, N=10Y cm-3; njv, =6 - 1017 sec-!. The last quantity corresponds to an electron current

of 100 mA, Since electron—electron collisions are being considered, we replace Z by one. We take the

quantities ¢ and o from experimental data. We assume o =10"% cm?, @ =10"% cm®.sec™!, The calcula-

tion yields
n =~ 1.510"% em™ @ =~ 2.2.102 gec™i

This frequency value corresponds to a wavelength less than 1 mm.
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